molblend

Calculate the number of required molecules of solute and solvent

Solute (e.g. Ethanol)

Solvent (e.g. Water)

Config

Note that the result is not optimized and may have common divisors.


Result


Cheet sheet

Name Molecular weight [g/mol] Density [g/cm3] Remarks
Water 18.01528 0.99820 (at 20 °C) ref
Methanol 32.04 0.792 ref
Ethanol 46.07 0.789 (at 20 °C) ref
2,2,2-trifluoroethanol 100.04 1.325±0.06 (at 20 °C) ref

Formulas

Units

\begin{align*} M_{mole} [mol] &= \frac{N_{Molecules}}{N_{Avogadro}} \\ C_{constant} [mol/mL] &= C_{constant} [mol/cm^3] = \frac{D_{density} [g/cm^3]}{R_{molecular~weight} [g/mol]} \\ W_{weight} [g] &= M_{mole} [mol] \cdot R_{molecular~weight} [g/mol] \\ V_{volume} [mL] &= \frac{M_{mole} [mol]}{C_{constant} [mol/mL]} \\ \end{align*}

Volume / Volume

\begin{align*} V_{solute} [mL] : V_{solution} [mL] &= X : 100 \\ V_{solution} [mL] &= \frac{100}{X}{X} V_{solute} [mL] \\ V_{solute} [mL] + V_{solvent} [mL] &= \frac{100}{X} V_{solute} [mL] \\ V_{solvent} [mL] &= \left(\frac{100}{X} - 1\right) V_{solute} [mL] \\ \left(\frac{M_{solvent} [mol]}{C_{solvent} [mol/mL]} \right) &= \left(\frac{100}{X} - 1\right) \left(\frac{M_{solute} [mol]}{C_{solute} [mol/mL]} \right) \\ \frac{N_{solvent}}{C_{solvent} [mol/mL]} &= \left(\frac{100}{X} - 1\right) \frac{N_{solute}}{C_{solute} [mol/mL]} \\ N_{solvent} &= \left(\frac{100}{X} - 1\right) \frac{C_{solvent} [mol/mL]}{C_{solute} [mol/mL]} N_{solute} \\ \end{align*}

Weight / Weight

\begin{align*} W_{solute} [g] : W_{solution} [g] &= X : 100 \\ W_{solution} [g] &= \frac{100}{X} W_{solute} [g] \\ W_{solute} [g] + W_{solvent} [g] &= \frac{100}{X} W_{solute} [g] \\ W_{solvent} [g] &= \left(\frac{100}{X} - 1\right) W_{solute} [g] \\ \left(M_{solvent} [mol] \cdot R_{solvent} [g/mol] \right) &= \left(\frac{100}{X} - 1\right) \left(M_{solute} [mol] \cdot R_{solute} [g/mol] \right) \\ \left(N_{solvent} \cdot R_{solvent} [g/mol] \right) &= \left(\frac{100}{X} - 1\right) \left(N_{solute} \cdot R_{solute} [g/mol] \right) \\ N_{solvent} &= \left(\frac{100}{X} - 1\right) \frac{R_{solute} [g/mol]}{R_{solvent} [g/mol]} N_{solute} \end{align*}

Weight / Volume

\begin{align*} W_{solute} [g] : V_{solution} [mL] &= X : 100 \\ V_{solution} [mL] &= \frac{100}{X} W_{solute} [g] \\ V_{solute} [mL] + V_{solvent} [mL] &= \frac{100}{X} W_{solute} [g] \\ V_{solvent} [mL] &= \frac{100}{X} W_{solute} [g] - V_{solute} [mL] \\ \left(\frac{M_{solvent} [mol]}{C_{solvent} [mol/mL]}\right) &= \frac{100}{X} \left(M_{solute} [mol] \cdot R_{solute} [g/mol]\right) - \left(\frac{M_{solute} [mol]}{C_{solute} [mol/mL]}\right) \\ \frac{N_{solvent}}{C_{solvent} [mol/mL]} &= \frac{100}{X} \left(N_{solute} \cdot R_{solute} [g/mol]\right) - \frac{N_{solute}}{C_{solute} [mol/mL]} \\ N_{solvent} &= \frac{100}{X} R_{solute} [g/mol] \cdot C_{solvent} [mol/mL] \cdot N_{solute} - \frac{C_{solvent} [mol/mL]}{C_{solute} [mol/mL]} N_{solute} \\ \end{align*}
Facebook Twitter Addthis